
Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

AddFlow Script v 1.0

 Tutorial

June 2024

Lassalle Technologies

http://www.lassalle.com

- page 1 -

http://www.lassalle.com/

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

CONTENTS

1) Introduction .. 4

2) Licensing ... 5

3) Getting Started ... 7

4) Interactive creation of a diagram 8
4.1 Overview .. 8

4.2 Create a diagram interactively .. 8
4.2.1 Draw a node ... 8
4.2.2 Draw a link .. 9
4.2.3 Stretch a link .. 10
4.2.4 Draw a reflexive link ... 11
4.2.5 Multiselection ... 12
4.2.6 Change properties of a node or a link ... 13
4.2.7 Change the destination or the origin node of a link ... 13
4.2.8 Selecting, zooming panning. .. 14

5) Programmatic creation of a diagram 15

5.1 Overview ... 15

5.2 AddFlow Items .. 15
5.2.1 Item ... 15
5.2.2 ContentItem ... 16
5.2.3 Node ... 17
5.2.4 Link ... 17
5.2.5 Label .. 18

5.3 Collections of items ... 19

5.4 Diagram creation .. 19
5.4.1 Our first program ... 19
5.4.2 Changing property values .. 21
5.4.3 Default property values .. 22
5.4.4 Stretching the links ... 24

5.5 More informations about ContentItem objects 26
5.5.1 Colors for contentItem objects and nodes .. 26
5.5.2 Displaying a text in a ContentItem object .. 26
5.5.3 Displaying an image in a node .. 27
5.5.4 Node shapes ... 28
5.5.5 Node pins ... 29

5.6 More informations about links .. 30
5.6.1 Colors ... 30
5.6.2 Link line style .. 30
5.6.3 Link arrows ... 31

5.7 Displaying link intersections .. 31

5.8 More informations about labels .. 32

5.9 Selection of items .. 34
5.9.1 Programmatic selection ... 34
5.9.2 Interactive selection ... 35
5.9.3 selectedItems property .. 35
5.9.4 selectionChange event ... 35

- page 2 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5.9.5 Hit testing .. 35

5.10 Diagram navigation .. 35

5.11 Zooming .. 36
5.11.1 Programmatic zoom ... 36
5.11.2 Interactive zoom ... 37

6) Avanced topics .. 38

6.1 Undo/Redo ... 38
6.1.1 General features .. 38
6.1.2 Updating the user interface ... 38
6.1.3 Grouping basic actions ... 38
6.1.4 What can be undone and redone? .. 38
6.1.5 Undo/Redo customization ... 38
6.1.6 Undo/Redo API .. 40

6.2 Serialization .. 41

6.3 Performance tuning .. 41
6.3.1 beginUpdate / endUpdate ... 41
6.3.2 Quadtree structure ... 41

6.4 Customizing the user interface ... 42
6.4.1 Capabilities .. 42
6.4.2 Appearances ... 43
6.4.3 Shadow properties .. 43
6.4.4 Grid properties .. 44
6.4.5 Handle properties ... 44
6.4.6 Pin properties ... 45
6.4.7 Miscellaneous .. 45

7) Automatic Graph Layout .. 46
7.1.1 Hierarchic layout .. 46

7.1.1.1 Purpose ... 46
7.1.1.2 Code example .. 47
7.1.1.3 Limitation ... 47
7.1.1.4 Side Effect .. 47

7.1.2 Force directed (symmetric) layout ... 48
7.1.2.1 Purpose ... 48
7.1.2.2 Code example .. 48
7.1.2.3 Limitation ... 48
7.1.2.4 Side Effect .. 48

7.1.3 Tree layout ... 49
7.1.3.1 Purpose ... 49
7.1.3.2 Code example .. 50
7.1.3.3 Limitation ... 50
7.1.3.4 Side Effect .. 50

- page 3 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

1) Introduction

AddFlow Script is a general purpose Flowcharting/Diagramming web component, which lets you
quickly build flowchart-enabled HTML5 applications.

AddFlow Script allows the creation and the manipulation of two-dimensional diagrams (a.k.a graphs).
An AddFlow diagram is a set of objects called nodes (also called vertices or entities) that can be linked
each other with links (also called edges, arcs or relations). These diagrams can be created
programmatically or interactively.

Each time you need to graphically display interactive diagrams, you should consider using AddFlow, a
royalty-free component that offers unique support to create diagrams interactively or
programmatically: workflow diagrams, database diagrams, communication networks, organizational
charts, process flows, state transitions diagrams, CTI applications, CRM (Customer Relationship
Management), expert systems, graph theory, quality control diagrams, …

AddFlow Script is the successor of AddFlow for HTML5. It is faster and it provides more features like
labels or jumps. It is written in TypeScript. It can be used with Angular.

Purpose of this tutorial

This tutorial provides information on:

• licensing

• creating diagrams programmatically, using the AddFlow Script API

• creating diagrams interactively

Who should use this tutorial?

This guide is intended for application programmers building web applications.

Samples

AddFlow Script is installed with one demo sample. Its source code (html, Javascript or TypeScript) is
provided.

- page 4 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

2) Licensing
If you do not own a commercial license, this file shall be governed by the license agreement that can
be found at: http://www.lassalle.com/script/license_evaluation.pdf

If you own a commercial license, this file shall be governed by the license agreement that can be
found at: http://www.lassalle.com/script/license_commercial.pdf

The key points are the following:

– it is royalty free

– one license per individual developer

– the evaluation version can be used only for evaluation and testing purpose.

– if you purchase a commercial license, you get the source code, support and the right to use
AddFlow for business purposes.

The following FAQ gives more details.

1. What is the difference between the evaluation license and the commercial license ?

With the evaluation license, no support is provided and the javascript source code is obfuscated
(minified): spaces and comments are removed and variables and function names are replaced by
meaningless names.

With the commercial license, you are entitled to obtain free support and you get also the full javascript
source code and have the right to modify it.

However, you have not the right to divulge, publish or distribute the source code of AddFlow or of a
modified version of AddFlow. You must previously obfuscate the source code before distributing or
publishing it.

2. Can I just minify the source code ?

Only if variables and function names are replaced by meaningless names. Just removing spaces and
comments is not enough.

3. Do you provide an Open Source license ?

While we acknowledge Open Source, we currently do not license AddFlow as an Open Source
software.

4. Is AddFlow runtime-royalty free ?

Yes.

5. How many developers can use AddFlow Script ?

AddFlow is licensed per individual developer. Each developer using AddFlow needs to purchase a
license.

6. Do you offer multi-pack discounts ?

Yes, we offer the following type of licenses:

- Single developer license: allows just one developer

- page 5 -

http://www.lassalle.com/html5/license_commercial.pdf
http://www.lassalle.com/html5/license_evaluation.pdf

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

- Team license: allows 4 developers

- Site license: allows unlimited developers at a single physical address.

- Enterprise license: allows all developers of an enterprise

7. How many projects can I create with a license of AddFlow Script ?

You can use your license of AddFlow Script on as many projects as you like because it can be
distributed on a royalty-free basis.

8. Will purchasing guarantee me upgrades ?

It does not include major version upgrades. However, we will provide bug fixes and minor
enhancements free of charge.

9. Do you provide refunds ?

Under no circumstances shall a refund be applied after the source code is sent to the client.

- page 6 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

3) Getting Started
1) Add the AddFlow Script to your html page, preferably at <head> tag:

<script>var exports = {"__esModule": true};</script>
<script src="../../addflow/flow.js" type="text/javascript"></script>

 2) Add the following html code to include a div element containing the canvas to display the diagram.

<div id="divFlow" style="border: 1px solid green; width: 900px; height: 500px;
 overflow: hidden;">
 <canvas id="canvasFlow" width="900" height="500" style="touch-action: none;">
 </canvas>
</div>

Then you are ready to use AddFlow interactively or programmatically. Let us first see how to use it
interactively.

remark: you are not forced to place the canvas inside a div element. You may find an example in the
"Network" example of the demo (network.htm). However you have to do that to obtain a scrolling
feature.

- page 7 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

4) Interactive creation of a diagram
4.1 Overview

It includes:

• the creation of items (nodes, links, labels)

• the selection of items (including multi-selection)

• the resizing of nodes or labels

• the moving of nodes or labels

• the stretching of links (the possibility to add or remove segments in a link)

• the possibility to change the origin or the destination of a link

It supports also the scrolling of diagrams and the use of grids.

Moreover, many properties allow customizing the interactive behavior of an AddFlow component. For
instance, you can prevent the user to create reflexive links with the CanReflexLink property or to
move nodes with the CanMoveItems properties.

And a set of methods and properties allow implementing a powerful Undo/Redo feature.

4.2 Create a diagram interactively

4.2.1 Draw a node

Bring the mouse cursor into the control, press the left button, move the mouse and release the left
button. You have created an elliptic node. This node is selected: that's why 8 handles (little circles) are
displayed.

The 8 handles allow resizing the node. If you want to move the node, you bring the mouse cursor
into the node (but not in the center), press the left button, move the mouse and release the left button.

remark: here we suppose that the isContext property of nodes is false (which is the case by default).
Otherwise, you would see also a context handle “ooo” as in the following image:

- page 8 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

TIP: Notice that, when adding new items in a diagram, the addflow canvas size is adjusted to be the
sum of the size of the diagram and the size of the viewport (the size of the div element containing
the addflow canvas). However, you may alter this behavior with the isFixedSize property. It it is true,
then the size of the addflow canvas does not change, whatever the size of the diagram may be.

4.2.2 Draw a link

Draw a second node.

Then bring the mouse cursor above the second node. A small circle handle is then displayed at the
center of the selected node.

- page 9 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

Bring the mouse over this small circle handle, press the left button, move the mouse towards the other
node. When the mouse cursor is into the other node, release the left button. The link has been
created. And it is selected: 3 handles are displayed in the link.

As you can see, the link stretching handles are also displayed as little rectangles. By default, those
handles are small rectangles as for the nodes above. But we can change the style of those handles.
The DemoFlow sample provided with AddFlow shows many distinct ways to display the node resizing
handles and the link stretching handles.

But, as you will see later in this tutorial, you can also use another way to create links by using pins.

remark: here we suppose that the isContext property of links is false (which is the case by default).
Otherwise, you would see also a context handle “ooo”.

4.2.3 Stretch a link

Bring the mouse cursor into the link handle in the middle of the link, press the left button, move the
mouse and release the left button. You have created a new link segment. It has now 5 handles
allowing you to add or remove segments. (The handle at the intersection of two segments allows you
to remove a segment: you move it with the mouse so that the two segments are aligned and when
these two segments are approximately aligned, release the left button).

- page 10 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

Create another segment

4.2.4 Draw a reflexive link

Select a node by clicking on it. Then bring the mouse cursor above the small diamond handle at the
center of the selected node. Press the left button, move the mouse outside the selected node, then
move it inside the selected node again, then release the left button. You have created a reflexive link,
i.e. a link whose origin and destination are the same.

- page 11 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

4.2.5 Multiselection

You can select several items by clicking them with the mouse and simultaneously pressing the shift or
control key.

- page 12 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

There is another way to perform multiselection, using the mouseAction property and assigning it the
mouseAction.Selection value. Then you can select several nodes and links: you bring the mouse
cursor into the AddFlow control, press the left button, move the mouse and release the left button. All
nodes or links inside the selection rectangle are selected. Then you can unselect some nodes by
clicking them with the mouse and simultaneously pressing the shift or control key. You can select them
again by using the same method.

4.2.6 Change properties of a node or a link

Interactively, without adding any code, you can change the position and the size of a node. You can
add segments to a link or remove them. To change other properties (shape, styles, colors, behaviors,
etc) of a node or a link, you have to write some code.

4.2.7 Change the destination or the origin node of a link

You can change interactively the destination or the origin of a link.You bring the mouse cursor into the
third link handle (near the arrow head), press the left button, move the mouse until the isolated node
and release the left button.

The new destination of the link has changed.

- page 13 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

4.2.8 Selecting, zooming panning.

Selection

If the mouseAction property of the AddFlow control is set to 'selection' or 'selection2', you can
select items with the mouse. The user brings the mouse cursor into the AddFlow control, press the left
button, move the mouse (which draws a rectangular area) and then release the left button: this has the
effect of selecting all items partially (in the case of 'selection') or completely (in the case of
'selection2') inside the rectangular area.

If the canSelectOnMouseMove property is true, the selection of items with the mouse is made at
each mouseMove event. Otherwise, it is made only when the mouseUp event is fired

Zooming

If the mouseAction property of the AddFlow control is set to 'zoom', you can zoom the diagram
interactively with the mouse. The user brings the mouse cursor into the AddFlow control, press the left
button, move the mouse (which draws a rectangular area) and then release the left button: this has the
effect of zooming and scrolling the view to fit the rectangular area.

The zooming is isotropic.

Panning

If the mouseAction property of the AddFlow control is set to 'pan', you can pan the diagram with the
mouse. You click on the diagram at a place where there is no item and you move the mouse: the
diagram is panned.

- page 14 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5) Programmatic creation of a diagram
5.1 Overview

In this chapter we will focus on how to create a diagram programmatically.

The AddFlow library is a .NET class library containing a set of classes for creating interactive diagrams
very easily.

The main class is the AddFlow class that derives from the Canvas class. It contains a DrawingVisual
object that which is used to display the diagram. The Visual property returns this DrawingVisual
object.

An AddFlow diagram contains three kinds of objects, Node, Link and Label objects. The Node and
Label classes derives from the ContentItem class. The ContentItem and Link classes derive from the
Item class.

The Item and ContentItem classes are abstract classes. You cannot use them directly but instead use
objects that derive from the Node, Link and Label classes.

5.2 AddFlow Items

5.2.1 Item

The Item class represents an item in the diagram. All classes representing diagram elements derive
from Item.

- page 15 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

The main purpose is to provide common methods and properties of every diagram element: nodes,
links, labels.

Note that it is an abstract class. You cannot use it directly but instead use objects that derive from the
Node, Link or Label classes.

The Item class provides some style properties, data properties and behavior properties used by all the
items of an AddFlow diagram.

Style properties

• strokeStyle the color used to draw the item

• fillStyle the color used to fill the item

• gradientFillStyle the color used to create a gradient with the fillStyle color

• textFillStyle the color used to display the text of the item

• lineWidth the thickness of the lines used to draw the item

• isShadowed determines whether a shadow is displayed for the item

• font the font used to display the text of the item

• opacity opacity of the item

Data properties

• text defines the string displayed inside or near the item.

• tag defines a tag associated to the item.

• labels is the list of labels associated to the item.

Behaviour properties

• isSelected returns/sets a flag indicating if the item is selected or not.

• isHitTestVisible determines whether the item can be hit tested

• isSelectable determines whether the item is selectable by clicking on it with the mouse or
unselectable (readonly or inactive)

• isHidden determines whether the item is hidden

• isExcludedFromLayout determines whether the item is excluded by a layout algorithm

5.2.2 ContentItem

A ContentItem object is an Item object that has a content which may be a string or/and an image.
Nodes and labels are ContentItem objects.

The main purpose is to provide common methods and properties for nodes and labels. Note that it is
an abstract class. You cannot use it directly but instead use objects that derive from Node or Label
classes.

Style properties

- page 16 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

• shapeFamily ellipse, rectangle, polygon, other

• polygon the set of points defining the content item shape if if the shapeFamily property is
'polygon'

• drawShape a method used to draw the content item shape if the shapeFamily property is
'other'

• fillShape a method used to fill the content item shape if the shapeFamily property is 'other'

• textPosition specify the position of the text in the content item

• imagePosition specify the position of the image in the content item

• textLineHeight the height of a line of the text of the content item

• textMargin the margin of the text in the content item

• imageMargin the margin of the image in the content item

Data properties

• image the image displayed in the content item

Behaviour properties

• isXMoveable determines whether the content item can be moved horizontally moved or not

• isYMoveable determines whether the content item can be moved vertically moved or not

• isXSizeable determines whether the content item can be resized horizontally moved or not

• isYSizeable determines whether the content item can be resized vertically moved or not

5.2.3 Node

A node (also called vertice or entity) is a content item that can be linked to another node.

Connection properties

• links collection property that allows getting all the links of the node.

• pins defining a list of anchor points where a link can be attached to the node.

Behaviour properties

• isInLinkable determine if “in” links are allowed.

• isOutLinkable determine if “out” links are allowed.

• isContext determines if a context handle is displayed when the link is selected

5.2.4 Link

A link (also called edge, relation or arc) is an Item object allowing linking two nodes. It is a line that
leaves the origin node and comes to the destination node. A link cannot exist without its origin and
destination nodes. If one of these two nodes is removed, the link is also removed.

Connection properties

- page 17 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

• org origin node of the link

• dst destination node of the link

• pinOrgIndex origin pin index of the link

• pinDstIndex the destination pin index of the link

Layout properties

• points collection of points that define the segments of the link

Style properties

• lineStyle the link line style (polyline, orthogonal, bezier, spline, database)

• arrowOrg origin arrow shape

• arrowDst destination arrow shape

• roundCornerSize the size of the rounded corners of the link segments

• jumpSize determines the size of the jump displayed at the intersection of 2 links.

• isOrientedText determines whether the link text can be drawn in the same direction as the
link itself

Behaviour properties

• isStretchable determines whether the link is stretchable or not. When a link is not stretchable,
the user cannot interactively stretch it with the mouse

• isContext determines if a context handle is displayed when the link is selected

• isOrgPointAdjustable determines whether the first link point can be changed

• isDstPointAdjustable determines whether the last link point can be changed

WARNING: A link is composed of several segments defined by the points property, a list of points.
However, you should not use this collection directly except for serialization purposes. To manipulate
the collection the link points, you should use instead the methods addPoint, removePoint,
clearPoints, setPoint, getPoint and countPoints.

5.2.5 Label

A label is a content item that can be owned by any item (node, link or even another label).

• owner allows getting and setting the owner of the label.

• dock returns/sets the DockStyle of the label. This property is relevant only if the label is
attached to a ContentItem object.

• anchorPositionOnLink returns/sets a value which defines the position of the label near the
link. This property is relevant only if the label is attached to a link.

- page 18 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5.3 Collections of items

AddFlow provide the following collections:

• items: the collection of all items of the diagram

• selectedItems: collection of all selected items of the diagram

• links: collection of all links (in and out) of a node

• labels: collection of labels of an AddFlow item.

WARNING: Those collections are provided for only for the AddFlow infrastructure and for enumeration
purposes. Don't use them for adding or removing items.

5.4 Diagram creation

5.4.1 Our first program

1) Add the AddFlow Script to your html page, preferabily at <head> tag:

<script>var exports = {"__esModule": true};</script>
<script src="../../addflow/flow.js" type="text/javascript"></script>

2) Add the following html code to include a div element containing the canvas to display the diagram.

<div id="divFlow" style="border: 1px solid green; width: 900px; height: 500px;
 overflow: hidden;">
 <canvas id="canvasFlow" width="900" height="500" style="touch-action: none;">
 </canvas>
</div>

3) Add the code to create our first diagram.xml

function createDiagram() {
 var canvas, flow, node1, node2, node3, link1, link2, link3;

 canvas = document.getElementById('canvasFlow');
 flow = new Lassalle.Flow(canvas);

 // Create 3 nodes
 node1 = new Node(flow, 40, 40, 80, 80, "First node");
 flow.addNode(node1);

 node2 = new Node(flow, 270, 179, 80, 80, "Second node");
 flow.addNode(node2);

 node3 = new Node(flow, 40, 230, 80, 80, "Third node");
 flow.addNode(node3);

 // Create 3 links
 link1 = new Link(flow, node1, node2, "link 1");
 flow.addLink(link1);

- page 19 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 link2 = new Link(flow, node2, node2, "link 2");
 flow.addLink(link2);

 link3 = new Link(flow, node2, node3, "link 3");
 flow.addLink(link3);

 flow.refresh();
}

4) Call the createDiagram() function from the appropiate place, for example at body "onload" event:

 <body onload="createDiagram()">

If we execute this program (tutorial_firstprogram.htm), it will create the following diagram:

In this diagram, the nodes and links receive default property values. For instance, the nodes have an
elliptical shape. The links are composed of one line terminated by an arrow. The link 2 is reflexive and
by default, it is created with 3 segments. The drawing color is black. The text color is black.

We are going to enhance this diagram.

However, let us focus on the way nodes and links are created. First we create the nodes then we
create the links. This is because a link cannot exist without its origin and destination nodes.

To create a node, you have to use the addNode method. There is no other method. The last
parameter of the Node constructor is optional. For instance, to create the first node, you could have
written:

node1 = new Node(flow, 40, 40, 80, 80);
flow.addNode(node1);
node1.Text = "First node";

To create a link, you have to use the addLink method. There is no other method. Only the three first
parameters are mandatory for the Link constructor. For instance, to create the first link, you could have
written:

link1 = new Link(flow, node1, node2);

- page 20 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

flow.addLink(link1);
link1.Text = "link 1";

The Link constructor has also two other optional parameters that allow setting the index of the origin
pin and the index of the destination pin.

WARNING: Note the call to the refresh method in the last line. This call is necessary to cause the
diagram to be drawn. The only case where this call is not needed is when you encapsulate your
diagram creation code by the calls to the beginUpdate end endUpdate methods.

5.4.2 Changing property values

Now let us replace the createDiagram method by the following new one:

 function createDiagram() {

 var canvas, node1, node2, node3, link1, link2, link3;

 canvas = document.getElementById('canvasFlow');

 flow = new Flow(canvas);

 // Create 3 nodes

 node1 = new Node(flow, 40, 40, 80, 80, "First node");

 node1.fillStyle = 'yellow';

 node1.gradientFillStyle = 'lightyellow';

 node1.strokeStyle = 'navy';

 node1.lineWidth = 2;

 flow.addNode(node1);

 node2 = new Node(flow, 270, 179, 80, 80, "Second node");

 node2.fillStyle = 'yellow';

 node2.gradientFillStyle = 'lightyellow';

 node2.strokeStyle = 'navy';

 node2.lineWidth = 2;

 node2.shapeFamily = ShapeFamily.Rectangle;

 flow.addNode(node2);

 node3 = new Node(flow, 40, 230, 80, 80, "Third node");

 node3.fillStyle = 'yellow';

 node3.gradientFillStyle = 'lightyellow';

 node3.strokeStyle = 'navy';

 node3.lineWidth = 2;

 node3.shapeFamily = ShapeFamily.Polygon;

 node3.polygon = [{ x:0, y:50 }, { x:50, y:0 }, { x:100, y:50 }, { x:50, y:100 }];

 flow.addNode(node3);

 // Create 3 links

 link1 = new Link(flow, node1, node2, "link 1");

 link1.strokeStyle = 'navy';

- page 21 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 link1.textFillStyle = 'red';

 flow.addLink(link1);

 link2 = new Link(flow, node2, node2, "link 2");

 link2.strokeStyle = 'navy';

 link2.textFillStyle = 'red';

 link2.lineStyle = LineStyle.Bezier;

 flow.addLink(link2);

 link3 = new Link(flow, node2, node3, 'link 3');

 link3.strokeStyle = 'navy';

 link3.textFillStyle = 'red';

 link3.lineStyle = LineStyle.Orthogonal;

 link3.arrowDst = [{ x:0, y:0 }, { x:-14, y:-6 }, { x:-10, y:0 }, { x:-14, y:6 }];

 flow.addLink(link3);

 flow.refresh();

 }

If we execute this program (tutorial_properties.htm), you will see that now, our nodes and links have
distinct appearances (colors, shapes, styles, etc).

Notice however that to specify the content of each node, we had to do it for each node, even if the
content is the same.

It is the same thing for the links. For instance, in the previous example, we have defined a blue color
for each link.

For a big diagram, this may be annoying to repeat always the same code for each object.

Fortunately, AddFlow allows using default property values that apply to all the next created items.

5.4.3 Default property values

Now let us replace the createDiagram method by the following new one:

- page 22 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

function createDiagram() {

 var canvas, node1, node2, node3, link1, link2, link3;

 canvas = document.getElementById('canvasFlow');

 flow = new Flow(canvas);

 flow.nodeModel.strokeStyle = 'navy';

 flow.nodeModel.fillStyle = 'yellow';

 flow.nodeModel.gradientFillStyle = 'lightyellow';

 flow.nodeModel.lineWidth = 2;

 // Create 3 nodes

 node1 = new Node(flow, 40, 40, 80, 80, "First node");

 flow.addNode(node1);

 node2 = new Node(flow, 270, 179, 80, 80, "Second node");

 node2.shapeFamily = ShapeFamily.Rectangle;

 flow.addNode(node2);

 node3 = new Node(flow, 40, 230, 80, 80, "Third node");

 node3.shapeFamily = ShapeFamily.Polygon;

 node3.polygon = [{ x:0, y:50 }, { x:50, y:0 }, { x:100, y:50 }, { x:50, y:100 }];

 flow.addNode(node3);

 // Create 3 links

 link1 = new Link(flow, node1, node2, "link 1");

 flow.addLink(link1);

 link2 = new Link(flow, node2, node2, "link 2");

 link2.lineStyle = LineStyle.Bezier;

 flow.addLink(link2);

 link3 = new Link(flow, node2, node3, 'link 3');

 link3.lineStyle = LineStyle.Orthogonal;

 link3.arrowDst = [{ x:0, y:0 }, { x:-14, y:-6 }, { x:-10, y:0 }, { x:-14, y:6 }];

 flow.addLink(link3);

 flow.refresh();

}

If we execute this new program (tutorial_defaultproperties.htm), it will create the same diagram.
However, our program is smaller because we have used the nodeModel and the linkModel
properties of AddFlow. The type of nodeModel is Node whereas the type of linkModel is Link. However
these objects are not part of AddFlow diagram. Both properties just allow specifying default property
values for nodes and links.

For instance, writing:

 flow.nodeModel.fillStyle = 'yellow';

that all the nodes that will be created after will be filled with a yellow color.

- page 23 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

Then you just need to specify the property values that differ from the defaults.

Notice that the nodeModel and the linkModel properties have also an interactive effect. Not only the
nodes created programmatically will be filled with a yellow color but also the nodes created
interactively with the mouse. This may be interesting or not, depending on what you intend to do.

5.4.4 Stretching the links

We would like to add segments to our links. The following createDiagram method demonstrates how
to do that.

 function createDiagram() {

 var canvas, node1, node2, node3, link1, link2, link3;

 canvas = document.getElementById('canvasFlow');

 flow = new Flow(canvas);

 flow.nodeModel.strokeStyle = 'navy';

 flow.nodeModel.fillStyle = 'yellow';

 flow.nodeModel.gradientFillStyle = 'lightyellow';

 flow.nodeModel.lineWidth = 2;

 flow.linkModel.strokeStyle = 'navy';

 flow.linkModel.textFillStyle = 'red';

 // Create 3 nodes

 node1 = new Node(flow, 40, 40, 80, 80, "First node");

 flow.addNode(node1);

 node2 = new Node(flow, 270, 179, 80, 80, "Second node");

 flow.addNode(node2);

 node2.shapeFamily = ShapeFamily.Rectangle;

 node3 = new Node(flow, 40, 230, 80, 80, "Third node");

 flow.addNode(node3);

 node3.shapeFamily = ShapeFamily.Polygon;

 node3.polygon = [{ x:0, y:50 }, { x:50, y:0 }, { x:100, y:50 }, { x:50, y:100 }];

 // Create 3 links

 // The second link has a bezier lineStyle, the color of its text is red

 // The third link has a orthogonal lineStyle.

 link1 = new Link(flow, node1, node2, "link 1");

 flow.addLink(link1);

 // Add 2 points (therefore 2 segments) to this first link

 link1.addPoint({ x: 160, y: 140 });

 link1.addPoint({ x: 240, y: 40 });

 link2 = new Link(flow, node2, node2, "link 2");

 flow.addLink(link2);

 link2.lineStyle = LineStyle.Bezier;

- page 24 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 // Stretch this reflexive link

 link2.setPoint({ x: 260, y: 20 }, 1);

 link2.setPoint({ x: 520, y: 20 }, 2);

 link3 = new Link(flow, node2, node3, 'link 3');

 flow.addLink(link3);

 link3.lineStyle = LineStyle.Orthogonal;

 link3.arrowDst = [{ x:0, y:0 }, { x:-14, y:-6 }, { x:-10, y:0 }, { x:-14, y:6 }];

 flow.refresh();

}

If we execute this program (tutorial_stretchinglinks.htm), you will see that the first link has now 3
segments and the reflexive link is bigger.

To add segments to a link or to alter its shape, you have to use the addPoint method collection of the
link.

You can add points (and therefore segments) to the link 1 because its link line style is 'polyline'. You
could also do that it its link line style was 'spline'. However, for the other cases (for instance 'bezier' as
for the link 2), you cannot add points. You can however still modify the position of the points, using the
setPoint method.

The rules for managing the link collection of points are the following:

 After its insertion in the diagram, a link has at least 2 points.

 You cannot remove these 2 points. The points property has always at least 2 points.

 You can add or delete points only if the link line style is 'polyline' or 'spline'. In other case, the
number of link points is fixed. For instance, if the link line style is 'bezier', then it has 4 points in
any case.

- page 25 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 You cannot change the first point of the Points collection except if the
isOrgPointAdjustable property is true or if the origin node has pins (you can change the
link pin)

 You cannot change the last point of the Points collection except if the isDstPointAdjustable
property is true or if the destination node has pins (you can change the link pin)

 You can change each other point of the points collection in any case.

5.5 More informations about ContentItem objects

A node may contain a text and an image. Its shape can be customized. You may define for each node
a set of pins to connect links.

5.5.1 Colors for contentItem objects and nodes
Four properties allow setting colors for a content item:

• strokeStyle It is the color of the node border.

• fillStyle It is the node filling color.

• gradientFillStyle It is used in conjunction with the fillStyle property to set a gradient color.

• textFillStyle It is the color of the node text.

WARNING: to avoid a gradient filling color, you have to set the gradientFillStyle color to be the
same value as the fillStyle color.

5.5.2 Displaying a text in a ContentItem object

You can associate a text to a content item with the text property. Two properties allow placing the text
inside the content item: textPosition and textMargin.

The tutorial_nodetext.htm page in the demo shows the effect of the textPosition property. In this
example, the textMargin is set to be equal to 10 at each side:

flow.nodeModel.textMargin = { left: 10, top: 10, right: 10, bottom: 10 };

- page 26 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

The font property allows changing the font used to display the content item text. Example:

node.font = "12px Arial";

Note also the property textLineHeight. This property allows setting the height of a line of text. This is
needed because the canvas doesn't give us a method for measuring the height of a string.

5.5.3 Displaying an image in a node

You can associate an image to a content item with the image property.

Two properties allow placing the image inside the content item: imagePosition and imageMargin.

The tutorial_nodeimage.htm page in the demo shows the effect of the imagePosition property. In this
example, the imageMargin is set to be equal to 10 at each side:

flow.nodeModel.imageMargin = { left: 10, top: 10, right: 10, bottom: 10 };

- page 27 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5.5.4 Node shapes
(remember that the Node class derives from the ContentItem class.)

The rules are the following:

• The shapeFamily is the first property to consider in order to define the shape of a node. It
may have four values: ellipse, rectangle, polygon, other.

• If you select 'polygon', then you have to set the polygon property.

• If you select 'other', then you have to define the drawShape method.

• In every case, you may customize the way the node is drawn inside its border with the
fillShape property.

The file tutorial_shapes.htm provide some examples.

- The first 3 nodes ('ellipse', 'or', 'summingjunction') have a shapeFamily equal to 'ellipse'. However the
'or' and 'summingjunction' nodes have a custom fillShape property value to draw the crosses inside
the node. For instance, the 'or' node shape is defined like that:

node = flow.addNode(0, 0, 80, 80, "or");
node.shapeFamily = "ellipse";
node.fillShape = function (ctx, x, y, w, h) {
 ctx.beginPath();
 ctx.moveTo(x + w / 2, y);
 ctx.lineTo(x + w / 2, y + h);
 ctx.stroke();
 ctx.beginPath();
 ctx.moveTo(x, y + h / 2);
 ctx.lineTo(x + w, y + h / 2);
 ctx.stroke();

- page 28 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 };

- The 3 following nodes ('rectangle', 'predefined process', 'internal storage') have a shapeFamily equal
to 'rectangle'. However the 'predefined process' and 'internal storage' nodes have a custom fillShape
property value to draw the lines inside the node.

- The 16 following nodes have a shapeFamily equal to 'polygon'. For instance the losange node shape
is defined like that:

node = flow.addNode(0, 0, 80, 80, "losange");
node.shapeFamily = "polygon";
node.polygon = [[0, 50], [50, 0], [100, 50], [50, 100]];

- The last 4 nodes have a shapeFamily equal to 'other'. The drawShape property has been defined for
these 4 nodes. For instance the 'delay' node shape is defined like that:

node = flow.addNode(0, 0, 80, 80, "delay");
node.shapeFamily = "other";
node.drawShape = function (ctx, x, y, w, h) {
 ctx.beginPath();
 ctx.moveTo(x + 3 * w / 4, y);
 ctx.lineTo(x, y);
 ctx.lineTo(x, y + h);
 ctx.lineTo(x + 3 * w / 4, y + h);
 ctx.bezierCurveTo(x + w + w / 16, y + h,
 x + w + w / 16, y, x + w - w / 4, y);
 ctx.closePath();
 };

5.5.5 Node pins

By default, to create a link, you use the 'central pin' of a node.

However, you are not limited to this 'central pin'.

Using the pins property, you may attach a set of pins (also called connectors) to a node. For instance,
the following line of code create a set of 4 pins for a node:

flow.nodeModel.pins = [{x:0, y:50},{x:50, y:0},{x:100, y:50},{x:50, y:100}];

The pins property is an array of points whose coordinates is between 0 and 100.

In this example, the line style of the link is 'orthogonal'.

- page 29 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

The code used to create such a link is the following:

link = new Link(flow, node1, node2, "", 2, 0);
flow.addLink(link);

Notice the last two parameters that allow setting the index of the origin pin and the index of the
destination pin.

5.6 More informations about links

5.6.1 Colors
Two properties allow setting colors for a link:

• strokeStyle It is the color of the link line.

• textFillStyle It is the color of the link text.

5.6.2 Link line style

You can define the line style of a link using the lineStyle property.

There are 5 possible values demonstrated in the file tutorial_linestyle.htm.

If the line style is 'polyline' or 'spline', you can add as many points as you wish to the link whereas in
the other cases, the number of points is fixed: a 'bezier' link or a 'database link' has 4 points. You can
move these points but you cannot add new points. The number of points of an orthogonal link is also
fixed but at the creation time, depending of the origin and destination pins.

- page 30 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5.6.3 Link arrows

You can define the the origin and destination arrow of a link, using the arrowOrg and arrowDst
properties. The value for both properties is an array of points. For instance:

 link.arrowDst = [[0, 0], [-10, -4], [-6, 0], [-10, 4]];

The file tutorial_arrows.htm provide some examples.

5.7 Displaying link intersections

AddFlow uses a poweful algorithm to find intersections between the link segments.

If the canShowJumps property of the AddFlow control is true then jumps will be displayed at the
intersection of this link with other links.

However, this will not work if the link is a curved link (Bezier or Spline).

The size of jumps is determined by the value of the jumpSize property of the link. If this value is 0,
then no jump will be displayed.

- page 31 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

5.8 More informations about labels

A label may be used just to display a legend in a diagram. It may also be attached to an AddFlow item.
The property that allows attaching a label to an item is the owner property. For an AddFlow item, the
labels property returns the collection of labels owned by this item. For instance:

for (let label of node.labels) {
 label.strokeStyle = 'red';
}

WARNING: The Captions collection property is provided only for the AddFlow infrastructure and for
enumeration purposes. Don't use it for adding or removing captions. Use instead the Owner property of
captions.

This is demonstrated in the tutorial_labels.htm file of the demo.

In the following code, a node and a label attached to this node are created:

node1 = new Node(flow, 40, 100, 80, 80, "");
flow.addNode(node1);
labelOwnedByNode = new Label(flow, 40, 60, 80, 20, "label 1", node1);
flow.addLabel(labelOwnedByNode);

We obtain the following diagram:

And if you move the node, its label will follow it.

- page 32 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

The dock property of the Label class allows placing several labels inside a node. It works the same
way as the Dock property for controls. For instance, in the following example, the first label is placed at
the top of the owner item because its dock property is set to DockStyle.Top.

// Dock property demo
// Create the "parent" node
node2 = new Node(flow, 460, 40, 250, 200, "");
node2.shapeFamily = ShapeFamily.Rectangle;
flow.addNode(node2);

// Create 5 child nodes
child1 = new Label(flow, 50, 130, 90, 20, "1: Top", node2);
child1.strokeStyle = 'transparent';
child1.fillStyle = 'lightgreen';
child1.isHitTestVisible = false;
child1.dock = DockStyle.Top;

child2 = new Label(flow, 50, 160, 60, 20, "2: Left", node2);
child2.strokeStyle = 'transparent';
child2.fillStyle = 'yellow';
child2.isHitTestVisible = false;
child2.dock = DockStyle.Left;

child3 = new Label(flow, 50, 190, 60, 20, "3: Bottom", node2);
child3.strokeStyle = 'transparent';
child3.fillStyle = 'lightsalmon';
child3.isHitTestVisible = false;
child3.dock = DockStyle.Bottom;

child4 = new Label(flow, 50, 220, 60, 20, "4: Right", node2);
child4.strokeStyle = 'transparent';
child4.fillStyle = 'lightgray';
child4.isHitTestVisible = false;
child4.dock = DockStyle.Right;

child5 = new Label(flow, 50, 250, 90, 20, "5: Fill", node2);
child5.strokeStyle = 'transparent';
child5.fillStyle = 'lightslategray';
child5.isHitTestVisible = false;
child5.dock = DockStyle.Fill;

// Add the items to the diagram.
flow.addLabel(child1);
flow.addLabel(child2);
flow.addLabel(child3);
flow.addLabel(child4);
flow.addLabel(child5);

- page 33 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

As you can see, the labels have been placed automatically in the owner node.

Labels may also be owned by a link. The anchorPositionOnLink property allows defining the position
of the label near the link. It is a value between 0 and 1. If it is 0, then the label is placed near the origin
node of the link. If it is 1, then the label is placed near the destination node of the link. If it is for
instance 0.5, then the label is placed near the middle of the link.

node3 = new Node(flow, 60, 400, 40, 40, "");
flow.addNode(node3);

node4 = new Node(flow, 660, 400, 40, 40, "");
flow.addNode(node4);

link = new Link(flow, node3, node4, "", -1, -1);
flow.addLink(link);

labelOwnedByLink1 = new Label(flow, 100, 380, 140, 20, "AnchorPositionOnLink 0",
link);
labelOwnedByLink1.anchorPositionOnLink = 0;
flow.addLabel(labelOwnedByLink1);

labelOwnedByLink2 = new Label(flow, 310, 380, 140, 20, "AnchorPositionOnLink 0.5",
link);
labelOwnedByLink2.anchorPositionOnLink = 0.5;
flow.addLabel(labelOwnedByLink2);

labelOwnedByLink3 = new Label(flow, 520, 380, 140, 20, "AnchorPositionOnLink 1",
link);
labelOwnedByLink3.anchorPositionOnLink = 1;
flow.addLabel(labelOwnedByLink3);

5.9 Selection of items

5.9.1 Programmatic selection

To manage the selection a node or a link, you have to use the isSelected property. For instance, to
select a node:

- page 34 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

node.isSelected = true;

5.9.2 Interactive selection

You can select an item (a node or a link) interactively by clicking it with the mouse.

You can also select several items interactively by clicking them with the mouse and simultaneously
pressing the shift or control key.

Or you can select items with a selection rectangle, if the mouseAction property is set to 'selection'. In
this last case, you bring the mouse cursor into the AddFlow control, press the left button, move the
mouse and release the left button. All nodes or links partly inside the selection rectangle are selected.
Then you can unselect some nodes by clicking them with the mouse and simultaneously pressing the
shift or control key. You can select them again by using the same method.

FAQ: How to select interactively a link with the mouse?

If the link is made of one or several segments, then if you want to select it with the mouse, you have
just to click near one of its segments. If the link is a bezier or a spline curve, then you have just to
click near the curve.

5.9.3 selectedItems property

The Flow selectedItems property allows getting the array of selected items. For instance:

// Make each selected nodes red
for (let item of flow.selectedItems) {
 if (item instanceof Node) {
 node.fillStyle = 'red';
 node.refresh();
 }
}

5.9.4 selectionChange event

A selectionChange event is fired each time the selection status of an item is changed. However, you
can avoid that by setting the canSendSelectionChangedEvent property to false.

5.9.5 Hit testing

You can also know what object is under the mouse with the hittedItem property that returns the
reference of the item under the mouse. If several objects are under the mouse, the returned object is
the one that is at the top of the Z-order list. AddFlow provide some methods allowing changing this
order (bringToFront, sendToBack, ...)

If the isHitTestVisible property of an item is false, then this item cannot be hit tested.

5.10Diagram navigation

AddFlow provides four and only four properties to navigate in a diagram (“Network traversals”). Notice
that these properties described here are demonstrated in the tutorial_navigation.htm page in the
demo sample provided with AddFlow.

We have already spoken of these properties.

- page 35 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

• items. This property returns the array of all items of the diagram.

• selectedItems. This property returns the array of all selected items of the diagram.

• links. This property returns the array of links coming to or leaving a node.

• org. It is the origin node of a link.

• dst. It is the destination node of a link.

For instance, to change the color of all nodes of the diagram:

 for (let item of flow.items) {
 if (item instanceof Node) {
 emphasizeItem(item, 'red', 2);
 }
 }

For instance, to change the color of each 'out' node of each selected node:

 for (let item of flow.selectedItems) {
 if (item instanceof Node) {
 let selnode = item;
 for (let link of selnode.links) {
 if (link.org === selnode) {
 let node = link.dst;
 emphasizeItem(node, 'red', 3);
 }
 }
 }
 }

The emphasizeItem function just changes the color and width of the item border:

 function emphasizeItem(item, strokeStyle, lineWidth) {
 item.strokeStyle = strokeStyle;
 item.lineWidth = lineWidth;
 item.refresh();
 }

5.11Zooming

5.11.1Programmatic zoom

The zoom property allows zooming a diagram. It is a numeric value representing the zoom factor. Its
default value is equal to 1. Notice that the zoom is isotropic ensuring a 1:1 aspect ratio.

The zoomRectangle method allows zooming and scrolling a view to fit a specified rectangular portion
of the diagram. The zoom is isotropic.

The zoomCenter method allows applying a specified zoom factor and arranging so that a specified
point is placed at the center of the viewport

TIP: How to autofit the diagram; i.e. how to adjust the zoom to its maximum while still keeping
all the items in view?

You can implement this feature using the zoomRectangle method and the xExtent and yExtent
properties.

- page 36 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

flow.zoomRectangle(0, 0, xExtent, flow.yExtent));

5.11.2Interactive zoom

Notice that you may also zoom the diagram interactively with the mouse if the mouseAction property
of the AddFlow control is set to 'zoom'. The user brings the mouse cursor into the AddFlow control,
press the left button, move the mouse (which draws a rectangular area) and then release the left
button: this has the effect of zooming and scrolling the view to fit the rectangular area.

- page 37 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

6) Avanced topics
6.1 Undo/Redo

6.1.1 General features

AddFlow has a property named taskManager that provides a powerful multilevel Undo/Redo feature.
The history length is limited only by available memory. However, you can limit it yourself with the
undoLimit property of the taskManager object. You can also enable/disable the undo/redo with the
canUndoRedo property of AddFlow.

6.1.2 Updating the user interface

Some properties and methods allow you to properly update the user interface. The canUndo and
canRedo methods will tell you if there is something to undo or redo and therefore will allow you to
grey out the menu options. The redoCode and undoCode properties return a code that describes the
action waiting to be redone or undone. This will allow your application to give descriptions of the
actions on the undo and redo history.

6.1.3 Grouping basic actions

Every basic action has a code. However, the beginAction and endAction methods allow you to
define a group of actions and to assign a code to this group. This is useful if for instance, in your
application, the user can open a dialog box allowing changing several properties of a node (for
instance, its text, its shape and its filling color). You will certainly wish to allow the user to undo these 3
basic actions in one time.

Notice that you can also stop recording actions with the skipUndo method and also clear the
Undo/Redo buffer with the clear method.

Another interesting method is the addToLastAction method. For instance, it allows grouping some
actions with the last recorded action or group of actions.

Notice that you have to call the endAction to terminate the group of actions.

6.1.4 What can be undone and redone?

The rule is the following: every interactive action that changes a diagram can be undone or redone.
This includes actions like moving or resizing nodes or stretching links or changing a text.

However, making a selection does not change the document so you will not be able to undo a
selection. Changing properties of the AddFlow control (zoom, grid, default filling color, etc) does not
change the document too. Therefore, it will not be possible to undo these actions. And finally, file, print
and export operations are clearly not undoable.

6.1.5 Undo/Redo customization

The undo/redo can be customized. For that, you have to create a custom task class and then you can
insert it in the Undo/Redo buffer with the submitTask method. The custom task class must contain a
'redo' and an 'undo' method.

The file customundo.htm of the demo shows how to do that: if you select a node, you can change its
text and its text color. And then, you can undo this action.

var NodePropertiesTask = function (node, oldText, oldTextFillStyle) {
 this.currentItem = node;
 this.code = 'node properties';

- page 38 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

 this.group = -1;

 this.oldText = oldText;
 this.oldTextFillStyle = oldTextFillStyle;

 this.redo = function () {
 this.undo();
 };

 this.undo = function () {
 var oldText = this.currentItem.text;
 this.currentItem.text = this.oldText;
 this.oldText = oldText;

 var oldTextFillStyle = this.currentItem.textFillStyle;
 this.currentItem.textFillStyle = this.oldTextFillStyle;
 this.oldTextFillStyle = oldTextFillStyle;

 this.currentItem.refresh();
 };
};

When the user click on the “Submit” button, the text and the text color are assigned to the selected node.The
code is the following:

function submit() {
 var selectedItems, node, textzone, combo;

 selectedItems = flow.selectedItems;
 if (selectedItems.length > 0) {
 if (selectedItems[0] instanceof Node) {
 node = selectedItems[0];

 flow.taskManager.submitTask(
 new NodePropertiesTask(node, node.text, node.textFillStyle));

 // Set text
 textzone = document.getElementById('text');
 node.text = textzone.value;

 // Set text color
 combo = document.getElementById('colorSelection');
 node.textFillStyle = combo.value;

 node.refresh();
 }
 }
}

As you can see, before the node receives new values for its text and textFillStyle properties, you can
find the following code line:

flow.taskManager.submitTask(
 new NodePropertiesTask(node, node.text, node.textFillStyle));

This causes the new custom action to be registered in the list of tasks (undo/redo buffer).

- page 39 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

6.1.6 Undo/Redo API

The following table gives the list of all properties and methods available to manage the undo/redo
feature.

addToLastAction Add the following actions in the last group of actions

beginAction Start a group of actions that can be undone in one time.

canRedo Indicates if there is an action that can be redone.

canUndo Indicates if there is an action that can be undone.

canUndoRedo Determines whether undo/redo is allowed.

clear Clears the undo/redo buffer.

endAction Terminate a group of actions that can be undone in one time.

redo Redo, if possible, the last action.

redoCode Returns the code of the next redoable action.

redoItem Returns the item involved in the next redoable action

skipUndo Determines whether the following actions are recorded in the undo manager.

submitTask Submit a task (or action) that can be undone and redone.

removeLastTask Remove the last task that has been added in the undo list.

undo Undo, if possible, the last action.

undoCode Returns the code of the next undoable action.

undoItem Returns the item involved in the next undoable action.

undoLimit Sets and returns the number of undo commands that can be performed.

- page 40 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

6.2 Serialization

AddFlow does not provide any serialization feature. However, the json.htm example in the demo
sample shows how to deals with serialization. In this example, the diagram is saved in JSON format.
Only the properties different from the default values defined in the nodeModel, labelModel and
linkModel properties are saved.

6.3 Performance tuning

6.3.1 beginUpdate / endUpdate

To maintain performance while items are added to the AddFlow control, call the beginUpdate method.
The beginUpdate method prevents the control from calculating the size of the.The size is updated only
when the endUpdate method is called.

There is an example in the Stress example of the demo (stress.htm).

function randomCreation(flow, maxnodes, xarea, yarea, nodesize) {
 var org, dst, link, i, x, y;

 // So that the user will be able to undo the diagram in one time
 if (flow.taskManager.canUndoRedo) {
 flow.taskManager.beginAction("creatediagram");
 }

 flow.beginUpdate();

 org = null;

 for (i = 0; i < maxnodes; i++) {
 // Create a node at a random position
 x = Math.floor(Math.random() * xarea);
 y = Math.floor(Math.random() * yarea);
 dst = flow.addNode(x, y, nodesize, nodesize);

 // and add a link from previous node (link not added if org is null)
 link = flow.addLink(org, dst);

 // The current destination node is the origin node for the next addd link.
 org = dst;
 }

 flow.endUpdate();

 if (flow.taskManager.canUndoRedo) {
 flow.taskManager.endAction();
 }

}

6.3.2 Quadtree structure

Better speed performance is provided by using a quadtree structure and it is the case by default.
Otherwise. You may use the isQuadtree property to determine if the quadtree structure is used or not.

A quadtree is a data structure in which the coordinate space is broken up into 4 quadrants that contain
items. If too many items are added into a quadrant, then that quadrant is divided into 4 sub-quadrants.
This can provide very fast lookup of items based on the coordinates.

With a quadtree structure, loading a big diagram may take more time because the quadtree structure
must be created. However, interactive actions, for instance selecting an item or moving nodes, will be
faster. You may test that with the stress.htm file of the demo sample. You may compare how fast is
selected an item if the parameter of the isQuadTree property is true or if it is false.

- page 41 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

flow.isQuadtree = true; // By default, it is true so this call is not needed here

6.4 Customizing the user interface

6.4.1 Capabilities

Following properties allow to set capabilities for an AddFlow control and therefore to customize it.

For instance, if you wish to allow only one link between two nodes, you have just to unset the
canMultiLink property.

Or if you wish to prevent the user from creating links, you have just to unset the canDrawLink
property.

canChangeDst Determines whether the user can interactively change the
destination of a link.

canChangeOrg Determines whether the user can interactively change the origin
of a link.

canDragScroll Determines whether drag scrolling is allowed or not.

canDrawNode Determines whether interactive creation of nodes is allowed or
not.

canDrawLink Determines whether interactive creation of links is allowed or not.

canMultiLink Determines whether you can create several links between two
nodes.

canMoveNode Determines whether interactive dragging of nodes is allowed or
not.

canMultiSelect Determines whether multiselection of nodes is allowed or not.

canReflexLink Determines whether interactive creation of reflexive links is
allowed or not.

canSizeNode Determines whether interaction resizing of nodes is allowed or
not.

canShowJumps Determines whether jumps are displayed at the intersection of
links.

- page 42 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

canShowContextHandle Determines whether context handles are displayed for selected items

canSelectOnMouseMove Indicates whether the selection of items with the mouse is made only
when the mouseUp event is fired or at each mouseMove event

canSendSelectionChangedEvent Determines whether the selectionChanged event is fired or not.

canStretchLink Determines whether interactive stretching of links is allowed or
not.

6.4.2 Appearances

fillStyle Returns/sets the canvas background color.

linkModel Defines the default property values for links.

nodeModel Defines the default property values for nodes.

ownerDraw A method allowing making custom drawingg on the AddFlow canvas.

roundedCornerSize Returns/sets the size of the rounded corners of the link segments.

zoom The zooming factor

6.4.3 Shadow properties

shadowOffsetX Returns/sets the X offset of the shadow used to display items

shadowOffsetY Returns/sets the Y offset of the shadow used to display items

shadowBlur Returns/sets the amount of blur on the shadow used to display items, in
pixels.

shadowColor Returns/sets the color of the shadow used to display items.

- page 43 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

6.4.4 Grid properties

Five properties are provided to manage the grid.

gridSizeX Returns/sets the horizontal grid size.

gridSizeY Returns/sets the vertical grid size.

gridSnap Determines whether nodes are aligned on the grid

gridDraw Determines whether the grid is displayed or not.

gridStrokeColor Returns/sets the grid color.

6.4.5 Handle properties

Several properties allow customizing the size and color of the handles used to resize a node or stretch
a link.

handleSize Returns/sets the size of the handles used to select items.

handleGradientColor1 Returns/sets the first color defining the gradientstyle used for
handles

handleGradientColor2 Returns/sets the second color defining the gradient style used for the
selection handles of nodes and links.

handleStrokeStyle Returns/sets the color used to draw a selection handle of a node or
a link.

contextHandleSize Returns/sets the size of a context handle. It is the horizontal size.
The vertical sise is equal to the horizontal size multiplied by 2 and
divided by 5.

contextHandleGradientColor1 Returns/sets the first color defining the gradient style used for
context handles

contextHandleGradientColor2 Returns/sets the second color defining the gradient style used for
context handles

- page 44 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

contextHandleStrokeStyle Returns/sets the drawing color of the context handles

6.4.6 Pin properties

Several properties allow customizing the size and color of the pins used to create a link.

pinSize Returns/sets the size of the pins used to draw links.

pinGradientColor1 Returns/sets the first color defining the gradient style used for pins.

pinGradientColor2 Returns/sets the second color defining the gradient style used for pins.

pinStrokeStyle Returns/sets the color used to draw pins

centralPinGradientColor1 Returns/sets the first color defining the gradient style used for central
pins.

centralPinGradientColor2 Returns/sets the second color defining the gradient style used for
central pins.

centralPinStrokeColor Returns/sets the color used to draw central pin

6.4.7 Miscellaneous

bezierSelectionLinesStrokeStyle Returns/sets the drawing color of the lines used for selected
bezier links.

selRectStrokeStyle Returns/sets the selection rectangle color.

selRectLineWidth Returns/sets the selection rectangle width.

linkSelectionAreaWidth Determines the width of the area where the user has to click to
select a link.

removePointDistance Returns/sets a value that determines if the user can remove a
link point by dragging the handle to a position where it has a very
obtuse angle to its surrounding link points.

- page 45 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

7) Automatic Graph Layout

The primary purpose of an automatic graph layout feature is to offer a way to display graphs or flow
charts in a reasonable manner, following some aesthetic rules.

AddFlow provide a set of 3 graph layout algorithms:

o Hierarchic layout
o Force directed (Symmetric) layout
o Tree layout

Each of these graph layout algorithms performs a layout on a graph. Performing a layout automatically
positions its nodes (also called vertices) and links (also called edges).

Typically, you can first create your nodes and links inside AddFlow, using the AddFlow API, giving
each node a random or a (0,0) position. Then you call the layout method of the graph layout control of
your choice. This method will position the nodes and the links in a reasonable manner in the AddFlow
control, following some aesthetic rules that depend on the chosen control (hierarchical, symmetric,
orthogonal...).

Remarks

 The demo sample installed with AddFlow shows how to use each graph layout component.
 Reflexive links are not taken into account by layout algorithms. Reflexive links are just

translated to follow their origin (and also destination) node.

TIP: How to manage so that the layout algorithm applies only to a subset of the graph?

You have to use the isExcludedFromLayout property. Only nodes and links whose
isExcludedFromLayout property is false are involved in a layout. This will allow you to make the
layout algorithm to ignore some nodes or links.

7.1.1 Hierarchic layout

7.1.1.1 Purpose

This algorithm performs a hierarchical layout on a graph. The hierarchical layout arranges vertices in
horizontal layers. The order of the nodes on the layers is chosen so that the number of crossings is
kept as small as possible.

- page 46 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

- Hierarchic layout -

7.1.1.2 Code example

The following code is all you need to do to perform a hierarchical layout:

flow.doHierarchicLayout(
50, // Sets the distance between adjacent levels
50, // Sets the distance between adjacent nodes
Orientation.North, // The orientation of the graph
{ width: 5, height: 5 }, // x and y margins
0); // No limitation in the number of nodes in a level

This code supposes that you have a form containing an AddFlow control. You create the graph in the
AddFlow control, either interactively, either programmatically (in this case, giving each node a random
position or a (0,0) position). Then you apply the layout to this graph. And each bode will be placed at a
reasonable position.

7.1.1.3 Limitation

It works with any graph, connected or not.

7.1.1.4 Side Effect

After the layout execution:

• the line style of the links is polyline

• the isOrgPointAdjustable property of the destination node of a link is set to false.

• the isDstPointAdjustable property of the origin node of a link is set to false.

- page 47 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

7.1.2 Force directed (symmetric) layout

7.1.2.1 Purpose

This algorithm performs a symmetric layout on a graph. This layout produces a high degree of
symmetry and is particularly useful for undirected graphs, where the directions of the links are not
important. It is using a force-directed algorithm (the GEM method of Frick, Ludwig and Mehldau)
where a graph is viewed as a system of bodies with forces acting between the bodies.

- Symmetric layout -

7.1.2.2 Code example

The following code is all you need to do to perform a symmetric layout on a graph:

flow.doForceDirectedLayout(
40, // Sets the distance between nodes
{ width: 5, height: 5 }, // x and y margins
true, // The layout takes account of the isXMoveable and isYMoveable

 // properties of the nodes.
true, // The nodes are placed randomly at the beginning of the layout
true, // The step event is fired
false); // No animation provided

7.1.2.3 Limitation

It works with any graph, connected or not. However, it is recommended to work only with small graphs
(less than 200 nodes) because force-directed methods are using considerable computational
resources.

7.1.2.4 Side Effect

After the layout execution:

• the line style of the links is polyline and each link is composed of only one segment.

• the isOrgPointAdjustable property of the destination node of a link is set to false.

- page 48 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

• the isDstPointAdjustable property of the origin node of a link is set to false.

7.1.3 Tree layout

7.1.3.1 Purpose

This algorithm performs a tree layout on a graph. This layout applies only to a specific subset of
graphs: rooted trees. In such a graph, no node may have more than one parent. It offers two drawing
styles (drawingStyle property).

 If drawingStyle is layered, then the drawing of the tree occupies as little space as possible
while satisfying certain aesthetics: nodes at the same level of the tree are placed on the same
line and a parent is centred over its children.

 If drawingStyle is radial, then the root of the tree is placed at the origin and the layers are
concentric circles centred at the origin.

– Tree layout: drawingStyle = 'layered' -

- Tree layout: drawingStyle = 'radial' -

- page 49 -

Copyright (c) 2024 Lassalle Technologies. All Rights Reserved

7.1.3.2 Code example

The following code is all you need to do to perform a tree layout on a graph:

flow.doTreeLayout(
50, // Sets the distance between adjacent levels
50, // Sets the distance between adjacent nodes
TreeDrawingStyle.Layered, // The drawing style (layered or radial)
Orientation.North, // The orientation of the graph
{ width: 5, height: 5 }); // x and y margins

If the graph is not a forest of rooted trees, an exception is generated.

7.1.3.3 Limitation

The layout applies only to a specific subset of graphs: rooted trees. More precisely, the layout applies
to forests (sets of rooted trees).

7.1.3.4 Side Effect

After the layout execution:

• the line style of the links is polyline

• the isOrgPointAdjustable property of the destination node of a link is set to false.

• the isDstPointAdjustable property of the origin node of a link is set to false.

- page 50 -

	1) Introduction
	2) Licensing
	3) Getting Started
	4) Interactive creation of a diagram
	4.1 Overview
	4.2 Create a diagram interactively
	4.2.1 Draw a node
	4.2.2 Draw a link
	4.2.3 Stretch a link
	4.2.4 Draw a reflexive link
	4.2.5 Multiselection
	4.2.6 Change properties of a node or a link
	4.2.7 Change the destination or the origin node of a link
	4.2.8 Selecting, zooming panning.

	5) Programmatic creation of a diagram
	5.1 Overview
	5.2 AddFlow Items
	5.2.1 Item
	5.2.2 ContentItem
	5.2.3 Node
	5.2.4 Link
	5.2.5 Label

	5.3 Collections of items
	5.4 Diagram creation
	5.4.1 Our first program
	5.4.2 Changing property values
	5.4.3 Default property values
	5.4.4 Stretching the links

	5.5 More informations about ContentItem objects
	5.5.1 Colors for contentItem objects and nodes
	5.5.2 Displaying a text in a ContentItem object
	5.5.3 Displaying an image in a node
	5.5.4 Node shapes
	5.5.5 Node pins

	5.6 More informations about links
	5.6.1 Colors
	5.6.2 Link line style
	5.6.3 Link arrows

	5.7 Displaying link intersections
	5.8 More informations about labels
	5.9 Selection of items
	5.9.1 Programmatic selection
	5.9.2 Interactive selection
	5.9.3 selectedItems property
	5.9.4 selectionChange event
	5.9.5 Hit testing

	5.10 Diagram navigation
	5.11 Zooming
	5.11.1 Programmatic zoom
	5.11.2 Interactive zoom

	6) Avanced topics
	6.1 Undo/Redo
	6.1.1 General features
	6.1.2 Updating the user interface
	6.1.3 Grouping basic actions
	6.1.4 What can be undone and redone?
	6.1.5 Undo/Redo customization
	6.1.6 Undo/Redo API

	6.2 Serialization
	6.3 Performance tuning
	6.3.1 beginUpdate / endUpdate
	6.3.2 Quadtree structure

	6.4 Customizing the user interface
	6.4.1 Capabilities
	6.4.2 Appearances
	6.4.3 Shadow properties
	6.4.4 Grid properties
	6.4.5 Handle properties
	6.4.6 Pin properties
	6.4.7 Miscellaneous

	7) Automatic Graph Layout
	7.1.1 Hierarchic layout
	7.1.1.1 Purpose
	7.1.1.2 Code example
	7.1.1.3 Limitation
	7.1.1.4 Side Effect

	7.1.2 Force directed (symmetric) layout
	7.1.2.1 Purpose
	7.1.2.2 Code example
	7.1.2.3 Limitation
	7.1.2.4 Side Effect

	7.1.3 Tree layout
	7.1.3.1 Purpose
	7.1.3.2 Code example
	7.1.3.3 Limitation
	7.1.3.4 Side Effect

